Negative dependence of independent random variables conditional on their total sum

نویسندگان

  • Niclas Petersson
  • NICLAS PETERSSON
چکیده

Let X1,. .. , XN be independent non-negative integer valued random variables. In this paper we present a sufficient condition for the collection (X1,. .. , XN) to be stochastically increasing in the sum X1 + · · · + XN. Thus, if the condition is satisfied then (X1,. .. , XN) are negatively associated when conditioned on the sum X1 + · · · + XN. The result is a generalization of the main theorem in [8] by Liggett, and the proof is based on the coupling method. As an example, we also prove that a collection of independent Borel-distributed random variables are negatively associated when conditioned on their total sum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Neighborhood Dependence

This paper introduces a new concept of stochastic dependence among many random variables which we call conditional neighborhood dependence (CND). Suppose that there are a set of random variables and a set of sigma algebras where both sets are indexed by the same set endowed with a neighborhood system. When the set of random variables satisfies CND, any two non-adjacent sets of random variables ...

متن کامل

Conditional Dependence in Longitudinal Data Analysis

Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...

متن کامل

Sum of arbitrarily dependent random variables

In many classic problems of asymptotic analysis, it appears that the scaled average of a sequence of F -distributed random variables converges to G-distributed limit in some sense of convergence. In this paper, we look at the classic convergence problems from a novel perspective: we aim to characterize all possible limits of the sum of a sequence of random variables under different choices of d...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008